
113 Class Problems: Polynomial Factorization II

1. Determine if the following polynomials in Q[x] are irreducible.

(a) 14 + 42x− 90x3 − 9x6

(b) 1 + 3x2 + 5x3 − 1
3
x4

(c) 1 + x+ x3

Solutions:

2. Let R be a UFD which is not a field. Prove that Frac(R) is not algebraically closed.
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3. (Hard) Let F be a field. Let H be a finite subgroup of the multiplicative group of units
F ∗. Prove that H is cyclic. Must this be true if F is not a field?
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